Unix/Linux系統調用
accept()函數 Unix/Linux
access()函數 Unix/Linux
acct()函數 Unix/Linux
add_key()函數 Unix/Linux
adjtimex()函數 Unix/Linux
afs_syscall()函數 Unix/Linux
alarm()函數 Unix/Linux
alloc_hugepages()函數 Unix/Linux
arch_prctl()函數 Unix/Linux
bdflush()函數 Unix/Linux
bind()函數 Unix/Linux
break未實現 Unix/Linux
brk()函數 Unix/Linux
cacheflush()函數 Unix/Linux
chdir()函數 Unix/Linux
chmod()函數 Unix/Linux
chown()函數 Unix/Linux
chroot()函數 Unix/Linux
clone()函數 Unix/Linux
close()函數 Unix/Linux
connect()函數 Unix/Linux
create_module()函數 Unix/Linux
open()函數 Unix/Linux
dup2()函數 Unix/Linux
dup()函數 Unix/Linux
epoll_create()函數 Unix/Linux
epoll_ctl()函數 Unix/Linux
epoll_wait()函數 Unix/Linux
execve()函數 Unix/Linux
exit_group函數 Unix/Linux
_exit()函數 Unix/Linux
exit()函數 Unix/Linux
faccessat()函數 Unix/Linux
fattach()函數 Unix/Linux
fchdir()函數 Unix/Linux
fchmodat()函數 Unix/Linux
fchmod()函數 Unix/Linux
fchownat()函數 Unix/Linux
fchown()函數 Unix/Linux
fcntl()函數 Unix/Linux
fdatasync()函數 Unix/Linux
fdetach()函數 Unix/Linux
flock()函數 Unix/Linux
fork()函數 Unix/Linux
alloc_hugepages()函數 Unix/Linux
fstatat()函數 Unix/Linux
statfs()函數 Unix/Linux
stat()函數 Unix/Linux
statvfs()函數 Unix/Linux
fsync()函數 Unix/Linux
truncate()函數 Unix/Linux
futex()函數 Unix/Linux
futimesat()函數 Unix/Linux
getcontext()函數 Unix/Linux
getcwd()函數 Unix/Linux
getdents()函數 Unix/Linux
getdomainname()函數 Unix/Linux
getdtablesize()函數 Unix/Linux
getgid()函數 Unix/Linux
getuid()函數 Unix/Linux
getgroups()函數 Unix/Linux
getgroups()函數 Unix/Linux
gethostname()函數 Unix/Linux
getitimer()函數 Unix/Linux
get_kernel_syms()函數 Unix/Linux
unimplemented()函數 Unix/Linux
getpagesize()函數 Unix/Linux
getpeername()函數 Unix/Linux
setpgid()函數 Unix/Linux
getpgrp()函數 Unix/Linux
getpid()函數 Unix/Linux
getpmsg()函數 Unix/Linux
getppid()函數 Unix/Linux
getpriority()函數 Unix/Linux
getresuid()函數 Unix/Linux
getrlimit()函數 Unix/Linux
get_robust_list()函數 Unix/Linux
getrusage()函數 Unix/Linux
getsid()函數 Unix/Linux
getsockname()函數 Unix/Linux
getsockopt()函數 Unix/Linux
get_thread_area()函數 Unix/Linux
gettid()函數 Unix/Linux
gettimeofday()函數 Unix/Linux
getuid()函數 Unix/Linux
getunwind()函數 Unix/Linux
gtty()函數 Unix/Linux
idle()函數 Unix/Linux
outb()函數 Unix/Linux
inb_p()函數 Unix/Linux
inl()函數 Unix/Linux
inl_p()函數 Unix/Linux
inotify_add_watch()函數 Unix/Linux
inotify_init()函數 Unix/Linux
inotify_rm_watch()函數 Unix/Linux
outb()函數 Unix/Linux
insl()函數 Unix/Linux
insw()函數 Unix/Linux
intro()函數 Unix/Linux
inw()函數 Unix/Linux
inw_p()函數 Unix/Linux
io_cancel()函數 Unix/Linux
ioctl()函數 Unix/Linux
ioctl_list()函數 Unix/Linux
io_destroy()函數 Unix/Linux
io_getevents()函數 Unix/Linux
ioperm()函數 Unix/Linux
iopl()函數 Unix/Linux
ioprio_set()函數 Unix/Linux
io_setup()函數 Unix/Linux
io_submit()函數 Unix/Linux
ipc()函數 Unix/Linux
isastream()函數 Unix/Linux
kexec_load()函數 Unix/Linux
keyctl()函數 Unix/Linux
kill()函數 Unix/Linux
killpg()函數 Unix/Linux
lchown()函數 Unix/Linux
linkat()函數 Unix/Linux
link()函數 Unix/Linux
listen()函數 Unix/Linux
_llseek()函數 Unix/Linux
llseek()函數 Unix/Linux
lock()函數 Unix/Linux
lookup_dcookie()函數 Unix/Linux
lseek()函數 Unix/Linux
lstat()函數 Unix/Linux
madvise()函數 Unix/Linux
mincore()函數 Unix/Linux
mkdirat()函數 Unix/Linux
mkdir()函數 Unix/Linux
mknod()函數 Unix/Linux
mlockall()函數 Unix/Linux
mlock()函數 Unix/Linux
mmap2()函數 Unix/Linux
mmap()函數 Unix/Linux
modify_ldt()函數 Unix/Linux
mount()函數 Unix/Linux
move_pages()函數 Unix/Linux
mprotect()函數 Unix/Linux
mpx()函數 Unix/Linux
mq_getsetattr()函數 Unix/Linux
mremap()函數 Unix/Linux
msgctl()函數 Unix/Linux
msgget()函數 Unix/Linux
msgop()函數 Unix/Linux
msgsnd()函數 Unix/Linux
msync()函數 Unix/Linux
multiplexer()函數 Unix/Linux
munlockall()函數 Unix/Linux
munlock()函數 Unix/Linux
munmap()函數 Unix/Linux
nanosleep()函數 Unix/Linux
_newselect()函數 Unix/Linux
nfsservctl()函數 Unix/Linux
nice()函數 Unix/Linux
obsolete()函數 Unix/Linux
oldfstat()函數 Unix/Linux
oldlstat()函數 Unix/Linux
oldolduname()函數 Unix/Linux
oldstat()函數 Unix/Linux
olduname()函數 Unix/Linux
openat()函數 Unix/Linux
open()函數 Unix/Linux
outb()函數 Unix/Linux
outb_p()函數 Unix/Linux
outsb()函數 Unix/Linux
outsl()函數 Unix/Linux
outsw()函數 Unix/Linux
outw()函數 Unix/Linux
outw_p()函數 Unix/Linux
path_resolution()函數 Unix/Linux
pause()函數 Unix/Linux
perfmonctl()函數 Unix/Linux
personality()函數 Unix/Linux
pipe()函數 Unix/Linux
pivot_root()函數 Unix/Linux
poll()函數 Unix/Linux
posix_fadvise()函數 Unix/Linux
ppoll()函數 Unix/Linux
prctl()函數 Unix/Linux
pread()函數 Unix/Linux
prof()函數 Unix/Linux
pselect()函數 Unix/Linux
ptrace()函數 Unix/Linux
putmsg()函數 Unix/Linux
putpmsg()函數 Unix/Linux
pwrite()函數 Unix/Linux
query_module()函數 Unix/Linux
quotactl()函數 Unix/Linux
readahead()函數 Unix/Linux
readdir()函數 Unix/Linux
read()函數 Unix/Linux
readlinkat()函數 Unix/Linux
readlink()函數 Unix/Linux
readv()函數 Unix/Linux
reboot()函數 Unix/Linux
recvfrom()函數 Unix/Linux
recv()函數 Unix/Linux
recvmsg()函數 Unix/Linux
remap_file_pages()函數 Unix/Linux
renameat()函數 Unix/Linux
rename()函數 Unix/Linux
request_key()函數 Unix/Linux
rmdir()函數 Unix/Linux
sbrk()函數 Unix/Linux
sched_setaffinity()函數 Unix/Linux
sched_getparam()函數 Unix/Linux
sched_get_priority_max()函數 Unix/Linux
sched_get_priority_min()函數 Unix/Linux
sched_setscheduler()函數 Unix/Linux
sched_rr_get_interval()函數 Unix/Linux
sched_setparam()函數 Unix/Linux
sched_yield()函數 Unix/Linux
security()函數 Unix/Linux
select()函數 Unix/Linux
select_tut()函數 Unix/Linux
semctl()函數 Unix/Linux

getrlimit()函數 Unix/Linux

getrlimit, setrlimit - 獲取/設置資源限制

內容簡介

#include <sys/time.h>
#include <sys/resource.h>

int getrlimit(int resource**, struct rlimit *rlim);** 
int setrlimit(int resource**, const struct rlimit *rlim);**

描述

getrlimit () 和 setrlimit () 獲取和分別設置資源限制。每個資源都有一個相關的軟,硬限制,由 rlimit 結構( rlim 參數兩者之定義  getrlimit () 和  setrlimit ()):

struct rlimit {
rlim_t rlim_cur; /* Soft limit */
rlim_t rlim_max; /* Hard limit (ceiling for rlim_cur) */
};

The soft limit is the value that the kernel enforces for the corresponding resource. The hard limit acts as a ceiling for the soft limit: an unprivileged process may only set its soft limit to a value in the range from 0 up to the hard limit, and (irreversibly) lower its hard limit. A privileged process (under Linux: one with the  CAP_SYS_RESOURCE  capability) may make arbitrary changes to either limit value.

The value RLIM_INFINITY denotes no limit on a resource (both in the structure returned by getrlimit() and in the structure passed to setrlimit()).

resource must be one of:

標籤

描述

RLIMIT_AS

 

The maximum size of the process’s virtual memory (address space) in bytes. This limit affects calls to brk(2), mmap(2) andmremap(2), which fail with the error ENOMEM upon exceeding this limit. Also automatic stack expansion will fail (and generate a SIGSEGV that kills the process if no alternate stack has been made available via sigaltstack(2)). Since the value is a long, on machines with a 32-bit long either this limit is at most 2 GiB, or this resource is unlimited.

RLIMIT_CORE

 

Maximum size of core file. When 0 no core dump files are created. When non-zero, larger dumps are truncated to this size.

RLIMIT_CPU

 

CPU time limit in seconds. When the process reaches the soft limit, it is sent a SIGXCPU signal. The default action for this signal is to terminate the process. However, the signal can be caught, and the handler can return control to the main program. If the process continues to consume CPU time, it will be sentSIGXCPU once per second until the hard limit is reached, at which time it is sent SIGKILL. (This latter point describes Linux 2.2 through 2.6 behaviour. Implementations vary in how they treat processes which continue to consume CPU time after reaching the soft limit. Portable applications that need to catch this signal should perform an orderly termination upon first receipt of SIGXCPU.)

RLIMIT_DATA

 

The maximum size of the process’s data segment (initialized data, uninitialized data, and heap). This limit affects calls tobrk() and sbrk(), which fail with the error ENOMEM upon encountering the soft limit of this resource.

RLIMIT_FSIZE

 

The maximum size of files that the process may create. Attempts to extend a file beyond this limit result in delivery of a SIGXFSZsignal. By default, this signal terminates a process, but a process can catch this signal instead, in which case the relevant system call (e.g., write() truncate()) fails with the error EFBIG.

RLIMIT_LOCKS (Early Linux 2.4 only)

 

A limit on the combined number of flock() locks and fcntl() leases that this process may establish.

RLIMIT_MEMLOCK

 

The maximum number of bytes of memory that may be locked into RAM. In effect this limit is rounded down to the nearest multiple of the system page size. This limit affects mlock(2) andmlockall(2) and the mmap(2) MAP_LOCKED operation. Since Linux 2.6.9 it also affects the shmctl(2) SHM_LOCK operation, where it sets a maximum on the total bytes in shared memory segments (see shmget(2)) that may be locked by the real user ID of the calling process. The shmctl(2) SHM_LOCK locks are accounted for separately from the per-process memory locks established by mlock(2), mlockall(2), and mmap(2)MAP_LOCKED; a process can lock bytes up to this limit in each of these two categories. In Linux kernels before 2.6.9, this limit controlled the amount of memory that could be locked by a privileged process. Since Linux 2.6.9, no limits are placed on the amount of memory that a privileged process may lock, and this limit instead governs the amount of memory that an unprivileged process may lock.

RLIMIT_MSGQUEUE (Since Linux 2.6.8)

 

Specifies the limit on the number of bytes that can be allocated for POSIX message queues for the real user ID of the calling process. This limit is enforced for mq_open(3). Each message queue that the user creates counts (until it is removed) against this limit according to the formula:

bytes = attr.mq_maxmsg * sizeof(struct msg_msg *) + attr.mq_maxmsg * attr.mq_msgsize

where attr is the mq_attr structure specified as the fourth argument to mq_open().

The first addend in the formula, which includes sizeof(struct msg_msg \)* (4 bytes on Linux/x86), ensures that the user cannot create an unlimited number of zero-length messages (such messages nevertheless each consume some system memory for bookkeeping overhead).

RLIMIT_NICE (since kernel 2.6.12, but see BUGS below)

 

Specifies a ceiling to which the process’s nice value can be raised using setpriority(2) or nice(2). The actual ceiling for the nice value is calculated as 20 - rlim_cur. (This strangeness occurs because negative numbers cannot be specified as resource limit values, since they typically have special meanings. For example, RLIM_INFINITY typically is the same as -1.)

RLIMIT_NOFILE

 

Specifies a value one greater than the maximum file descriptor number that can be opened by this process. Attempts (open(),pipe(), dup(), etc.) to exceed this limit yield the error EMFILE.

RLIMIT_NPROC

 

The maximum number of threads that can be created for the real user ID of the calling process. Upon encountering this limit,fork() fails with the error EAGAIN.

RLIMIT_RSS

 

Specifies the limit (in pages) of the process’s resident set (the number of virtual pages resident in RAM). This limit only has effect in Linux 2.4.x, x < 30, and there only affects calls tomadvise() specifying MADV_WILLNEED.

RLIMIT_RTPRIO (Since Linux 2.6.12, but see BUGS)

 

Specifies a ceiling on the real-time priority that may be set for this process using sched_setscheduler(2) andsched_setparam(2).

RLIMIT_SIGPENDING (Since Linux 2.6.8)

 

Specifies the limit on the number of signals that may be queued for the real user ID of the calling process. Both standard and real-time signals are counted for the purpose of checking this limit. However, the limit is only enforced for sigqueue(2); it is always possible to use kill(2) to queue one instance of any of the signals that are not already queued to the process.

RLIMIT_STACK

 

The maximum size of the process stack, in bytes. Upon reaching this limit, a SIGSEGV signal is generated. To handle this signal, a process must employ an alternate signal stack (sigaltstack(2)).

RLIMIT_OFILE  is the BSD name for  RLIMIT_NOFILE .

返回值

On success, zero is returned. On error, -1 is returned, and  errno  is set appropriately.

錯誤

標籤

描述

EFAULT

rlim points outside the accessible address space.

EINVAL

resource is not valid; or, for setrlimit(): rlim->rlim_cur was greater than rlim->rlim_max.

EPERM

An unprivileged process tried to use setrlimit() to increase a soft or hard limit above the current hard limit; theCAP_SYS_RESOURCE capability is required to do this. Or, the process tried to use setrlimit() to increase the soft or hard RLIMIT_NOFILE limit above the current kernel maximum (NR_OPEN).

BUGS

In older Linux kernels, the  SIGXCPU  and  SIGKILL  signals delivered when a process encountered the soft and hard  RLIMIT_CPU  limits were delivered one (CPU) second later than they should have been. This was fixed in kernel 2.6.8.

In 2.6.x kernels before 2.6.17, a RLIMIT_CPU limit of 0 is wrongly treated as "no limit" (like RLIM_INFINITY). Since kernel 2.6.17, setting a limit of 0 does have an effect, but is actually treated as a limit of 1 second.

A kernel bug means that RLIMIT_RTPRIO does not work in kernel 2.6.12; the problem is fixed in kernel 2.6.13.

In kernel 2.6.12, there was an off-by-one mismatch between the priority ranges returned by getpriority(2) and RLIMIT_NICE. This had the effect that actual ceiling for the nice value was calculated as 19 - rlim_cur. This was fixed in kernel 2.6.13.

Kernels before 2.4.22 did not diagnose the error EINVAL for setrlimit() when rlim->rlim_cur was greater than rlim->rlim_max.

注意

A child process created via  fork (2) inherits its parents resource limits. Resource limits are preserved across  execve (2).

遵循於

SVr4, 4.3BSD, POSIX.1-2001.  RLIMIT_MEMLOCK  and  RLIMIT_NPROC  derive from BSD and are not specified in POSIX.1-2001; they are present on the BSDs and Linux, but on few other implementations.  RLIMIT_RSS  derives from BSD and is not specified in POSIX.1-2001; it is nevertheless present on most implementations. RLIMIT_MSGQUEUERLIMIT_NICERLIMIT_RTPRIO , and  RLIMIT_SIGPENDING  are Linux specific.

另請參閱

  • dup (2)

  • fcntl (2)

  • fork (2)

  • getrusage (2)

  • mlock (2)

  • mmap (2)

  • open (2)

  • quotactl (2)

  • sbrk (2)

  • shmctl (2)

  • sigqueue (2)