Unix/Linux系統調用
accept()函數 Unix/Linux
access()函數 Unix/Linux
acct()函數 Unix/Linux
add_key()函數 Unix/Linux
adjtimex()函數 Unix/Linux
afs_syscall()函數 Unix/Linux
alarm()函數 Unix/Linux
alloc_hugepages()函數 Unix/Linux
arch_prctl()函數 Unix/Linux
bdflush()函數 Unix/Linux
bind()函數 Unix/Linux
break未實現 Unix/Linux
brk()函數 Unix/Linux
cacheflush()函數 Unix/Linux
chdir()函數 Unix/Linux
chmod()函數 Unix/Linux
chown()函數 Unix/Linux
chroot()函數 Unix/Linux
clone()函數 Unix/Linux
close()函數 Unix/Linux
connect()函數 Unix/Linux
create_module()函數 Unix/Linux
open()函數 Unix/Linux
dup2()函數 Unix/Linux
dup()函數 Unix/Linux
epoll_create()函數 Unix/Linux
epoll_ctl()函數 Unix/Linux
epoll_wait()函數 Unix/Linux
execve()函數 Unix/Linux
exit_group函數 Unix/Linux
_exit()函數 Unix/Linux
exit()函數 Unix/Linux
faccessat()函數 Unix/Linux
fattach()函數 Unix/Linux
fchdir()函數 Unix/Linux
fchmodat()函數 Unix/Linux
fchmod()函數 Unix/Linux
fchownat()函數 Unix/Linux
fchown()函數 Unix/Linux
fcntl()函數 Unix/Linux
fdatasync()函數 Unix/Linux
fdetach()函數 Unix/Linux
flock()函數 Unix/Linux
fork()函數 Unix/Linux
alloc_hugepages()函數 Unix/Linux
fstatat()函數 Unix/Linux
statfs()函數 Unix/Linux
stat()函數 Unix/Linux
statvfs()函數 Unix/Linux
fsync()函數 Unix/Linux
truncate()函數 Unix/Linux
futex()函數 Unix/Linux
futimesat()函數 Unix/Linux
getcontext()函數 Unix/Linux
getcwd()函數 Unix/Linux
getdents()函數 Unix/Linux
getdomainname()函數 Unix/Linux
getdtablesize()函數 Unix/Linux
getgid()函數 Unix/Linux
getuid()函數 Unix/Linux
getgroups()函數 Unix/Linux
getgroups()函數 Unix/Linux
gethostname()函數 Unix/Linux
getitimer()函數 Unix/Linux
get_kernel_syms()函數 Unix/Linux
unimplemented()函數 Unix/Linux
getpagesize()函數 Unix/Linux
getpeername()函數 Unix/Linux
setpgid()函數 Unix/Linux
getpgrp()函數 Unix/Linux
getpid()函數 Unix/Linux
getpmsg()函數 Unix/Linux
getppid()函數 Unix/Linux
getpriority()函數 Unix/Linux
getresuid()函數 Unix/Linux
getrlimit()函數 Unix/Linux
get_robust_list()函數 Unix/Linux
getrusage()函數 Unix/Linux
getsid()函數 Unix/Linux
getsockname()函數 Unix/Linux
getsockopt()函數 Unix/Linux
get_thread_area()函數 Unix/Linux
gettid()函數 Unix/Linux
gettimeofday()函數 Unix/Linux
getuid()函數 Unix/Linux
getunwind()函數 Unix/Linux
gtty()函數 Unix/Linux
idle()函數 Unix/Linux
outb()函數 Unix/Linux
inb_p()函數 Unix/Linux
inl()函數 Unix/Linux
inl_p()函數 Unix/Linux
inotify_add_watch()函數 Unix/Linux
inotify_init()函數 Unix/Linux
inotify_rm_watch()函數 Unix/Linux
outb()函數 Unix/Linux
insl()函數 Unix/Linux
insw()函數 Unix/Linux
intro()函數 Unix/Linux
inw()函數 Unix/Linux
inw_p()函數 Unix/Linux
io_cancel()函數 Unix/Linux
ioctl()函數 Unix/Linux
ioctl_list()函數 Unix/Linux
io_destroy()函數 Unix/Linux
io_getevents()函數 Unix/Linux
ioperm()函數 Unix/Linux
iopl()函數 Unix/Linux
ioprio_set()函數 Unix/Linux
io_setup()函數 Unix/Linux
io_submit()函數 Unix/Linux
ipc()函數 Unix/Linux
isastream()函數 Unix/Linux
kexec_load()函數 Unix/Linux
keyctl()函數 Unix/Linux
kill()函數 Unix/Linux
killpg()函數 Unix/Linux
lchown()函數 Unix/Linux
linkat()函數 Unix/Linux
link()函數 Unix/Linux
listen()函數 Unix/Linux
_llseek()函數 Unix/Linux
llseek()函數 Unix/Linux
lock()函數 Unix/Linux
lookup_dcookie()函數 Unix/Linux
lseek()函數 Unix/Linux
lstat()函數 Unix/Linux
madvise()函數 Unix/Linux
mincore()函數 Unix/Linux
mkdirat()函數 Unix/Linux
mkdir()函數 Unix/Linux
mknod()函數 Unix/Linux
mlockall()函數 Unix/Linux
mlock()函數 Unix/Linux
mmap2()函數 Unix/Linux
mmap()函數 Unix/Linux
modify_ldt()函數 Unix/Linux
mount()函數 Unix/Linux
move_pages()函數 Unix/Linux
mprotect()函數 Unix/Linux
mpx()函數 Unix/Linux
mq_getsetattr()函數 Unix/Linux
mremap()函數 Unix/Linux
msgctl()函數 Unix/Linux
msgget()函數 Unix/Linux
msgop()函數 Unix/Linux
msgsnd()函數 Unix/Linux
msync()函數 Unix/Linux
multiplexer()函數 Unix/Linux
munlockall()函數 Unix/Linux
munlock()函數 Unix/Linux
munmap()函數 Unix/Linux
nanosleep()函數 Unix/Linux
_newselect()函數 Unix/Linux
nfsservctl()函數 Unix/Linux
nice()函數 Unix/Linux
obsolete()函數 Unix/Linux
oldfstat()函數 Unix/Linux
oldlstat()函數 Unix/Linux
oldolduname()函數 Unix/Linux
oldstat()函數 Unix/Linux
olduname()函數 Unix/Linux
openat()函數 Unix/Linux
open()函數 Unix/Linux
outb()函數 Unix/Linux
outb_p()函數 Unix/Linux
outsb()函數 Unix/Linux
outsl()函數 Unix/Linux
outsw()函數 Unix/Linux
outw()函數 Unix/Linux
outw_p()函數 Unix/Linux
path_resolution()函數 Unix/Linux
pause()函數 Unix/Linux
perfmonctl()函數 Unix/Linux
personality()函數 Unix/Linux
pipe()函數 Unix/Linux
pivot_root()函數 Unix/Linux
poll()函數 Unix/Linux
posix_fadvise()函數 Unix/Linux
ppoll()函數 Unix/Linux
prctl()函數 Unix/Linux
pread()函數 Unix/Linux
prof()函數 Unix/Linux
pselect()函數 Unix/Linux
ptrace()函數 Unix/Linux
putmsg()函數 Unix/Linux
putpmsg()函數 Unix/Linux
pwrite()函數 Unix/Linux
query_module()函數 Unix/Linux
quotactl()函數 Unix/Linux
readahead()函數 Unix/Linux
readdir()函數 Unix/Linux
read()函數 Unix/Linux
readlinkat()函數 Unix/Linux
readlink()函數 Unix/Linux
readv()函數 Unix/Linux
reboot()函數 Unix/Linux
recvfrom()函數 Unix/Linux
recv()函數 Unix/Linux
recvmsg()函數 Unix/Linux
remap_file_pages()函數 Unix/Linux
renameat()函數 Unix/Linux
rename()函數 Unix/Linux
request_key()函數 Unix/Linux
rmdir()函數 Unix/Linux
sbrk()函數 Unix/Linux
sched_setaffinity()函數 Unix/Linux
sched_getparam()函數 Unix/Linux
sched_get_priority_max()函數 Unix/Linux
sched_get_priority_min()函數 Unix/Linux
sched_setscheduler()函數 Unix/Linux
sched_rr_get_interval()函數 Unix/Linux
sched_setparam()函數 Unix/Linux
sched_yield()函數 Unix/Linux
security()函數 Unix/Linux
select()函數 Unix/Linux
select_tut()函數 Unix/Linux
semctl()函數 Unix/Linux

select()函數 Unix/Linux

select, pselect, FD_CLR, FD_ISSET, FD_SET, FD_ZERO - 同步I / O複用

內容簡介

/* According to POSIX.1-2001 */
#include <sys/select.h>

/* According to earlier standards */ #include <sys/time.h> #include <sys/types.h> #include <unistd.h>

int select(int nfds**, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout);**

void FD_CLR(int fd**, fd_set *set);** int FD_ISSET(int fd**, fd_set *set);** void FD_SET(int fd**, fd_set *set);** void FD_ZERO(fd_set **set*);

#define _XOPEN_SOURCE 600 #include <sys/select.h>

int pselect(int nfds**, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, const struct timespec *timeout, const sigset_t *sigmask);**

描述

select () and  pselect () allow a program to monitor multiple file descriptors, waiting until one or more of the file descriptors become "ready" for some class of I/O operation (e.g., input possible). A file descriptor is considered ready if it is possible to perform the corresponding I/O operation (e.g.,  read (2)) without blocking.

The operation of select() and pselect() is identical, with three differences:

標籤

描述

(i)

select() uses a timeout that is a struct timeval (with seconds and microseconds), while pselect() uses a struct timespec (with seconds and nanoseconds).

(ii)

select() may update the timeout argument to indicate how much time was left. pselect() does not change this argument.

(iii)

select() has no sigmask argument, and behaves as pselect() called with NULL sigmask.

Three independent sets of file descriptors are watched. Those listed in  readfds  will be watched to see if characters become available for reading (more precisely, to see if a read will not block; in particular, a file descriptor is also ready on end-of-file), those in writefds  will be watched to see if a write will not block, and those in  exceptfds  will be watched for exceptions. On exit, the sets are modified in place to indicate which file descriptors actually changed status. Each of the three file descriptor sets may be specified as NULL if no file descriptors are to be watched for the corresponding class of events.

Four macros are provided to manipulate the sets. FD_ZERO() clears a set. FD_SET() and FD_CLR() respectively add and remove a given file descriptor from a set.FD_ISSET() tests to see if a file descriptor is part of the set; this is useful after select() returns.

nfds is the highest-numbered file descriptor in any of the three sets, plus 1.

timeout is an upper bound on the amount of time elapsed before select() returns. It may be zero, causing select() to return immediately. (This is useful for polling.) Iftimeout is NULL (no timeout), select() can block indefinitely.

sigmask is a pointer to a signal mask (see sigprocmask(2)); if it is not NULL, thenpselect() first replaces the current signal mask by the one pointed to by sigmask, then does the ‘select’ function, and then restores the original signal mask.

Other than the difference in the precision of the timeout argument, the followingpselect() call:

ready = pselect(nfds, &readfds, &writefds, &exceptfds, timeout, &sigmask);

is equivalent to  atomically  executing the following calls:

sigset_t origmask;

sigprocmask(SIG_SETMASK, &sigmask, &origmask);
ready = select(nfds, &readfds, &writefds, &exceptfds, timeout);
sigprocmask(SIG_SETMASK, &origmask, NULL);

The reason that pselect() is needed is that if one wants to wait for either a signal or for a file descriptor to become ready, then an atomic test is needed to prevent race conditions. (Suppose the signal handler sets a global flag and returns. Then a test of this global flag followed by a call of select() could hang indefinitely if the signal arrived just after the test but just before the call. By contrast, pselect() allows one to first block signals, handle the signals that have come in, then call pselect() with the desiredsigmask, avoiding the race.)

超時

The time structures involved are defined in  <sys/time.h>  and look like

struct timeval {
long tv_sec; /* seconds */
long tv_usec; /* microseconds */
};

and

struct timespec {
long tv_sec; /* seconds */
long tv_nsec; /* nanoseconds */
};

(However, see below on the POSIX.1-2001 versions.)

Some code calls select() with all three sets empty, n zero, and a non-NULL timeout as a fairly portable way to sleep with subsecond precision.

On Linux, select() modifies timeout to reflect the amount of time not slept; most other implementations do not do this. (POSIX.1-2001 permits either behaviour.) This causes problems both when Linux code which reads timeout is ported to other operating systems, and when code is ported to Linux that reuses a struct timeval for multipleselect()s in a loop without reinitializing it. Consider timeout to be undefined afterselect() returns.

返回值

On success,  select () and  pselect () return the number of file descriptors contained in the three returned descriptor sets (that is, the total number of bits that are set in  readfds , writefdsexceptfds ) which may be zero if the timeout expires before anything interesting happens. On error, -1 is returned, and  errno  is set appropriately; the sets and  timeout become undefined, so do not rely on their contents after an error.

錯誤

標籤

描述

EBADF

An invalid file descriptor was given in one of the sets. (Perhaps a file descriptor that was already closed, or one on which an error has occurred.)

EINTR

A signal was caught.

EINVAL

nfds is negative or the value contained within timeout is invalid.

ENOMEM

unable to allocate memory for internal tables.

EXAMPLE

#include <stdio.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>

int main(void) { fd_set rfds; struct timeval tv; int retval;

/* Watch stdin (fd 0) to see when it has input. */ FD_ZERO(&rfds); FD_SET(0, &rfds);

/* Wait up to five seconds. */ tv.tv_sec = 5; tv.tv_usec = 0;

retval = select(1, &rfds, NULL, NULL, &tv); /* Don’t rely on the value of tv now! */

if (retval == -1)
     perror("select()");
else if (retval)
     printf("Data is available now.\n"); /* FD_ISSET(0, &rfds) will be true. */
else
     printf("No data within five seconds.\n");

return 0;
}

遵循於

select () conforms to POSIX.1-2001 and 4.4BSD ( select () first appeared in 4.2BSD). Generally portable to/from non-BSD systems supporting clones of the BSD socket layer (including System V variants). However, note that the System V variant typically sets the timeout variable before exit, but the BSD variant does not.

pselect() is defined in POSIX.1g, and in POSIX.1-2001.

注意

An  fd_set  is a fixed size buffer. Executing  FD_CLR () or  FD_SET () with a value of  fd  that is negative or is equal to or larger than FD_SETSIZE will result in undefined behavior. Moreover, POSIX requires  fd  to be a valid file descriptor.

Concerning the types involved, the classical situation is that the two fields of a timevalstructure are longs (as shown above), and the structure is defined in <sys/time.h>. The POSIX.1-2001 situation is

struct timeval {
time_t tv_sec; /* seconds */
suseconds_t tv_usec; /* microseconds */
};

where the structure is defined in <sys/select.h> and the data types time_t andsuseconds_t are defined in <sys/types.h>.

Concerning prototypes, the classical situation is that one should include <time.h> forselect(). The POSIX.1-2001 situation is that one should include <sys/select.h> forselect() and pselect(). Libc4 and libc5 do not have a <sys/select.h> header; under glibc 2.0 and later this header exists. Under glibc 2.0 it unconditionally gives the wrong prototype for pselect(), under glibc 2.1-2.2.1 it gives pselect() when _GNU_SOURCE is defined, under glibc 2.2.2-2.2.4 it gives it when _XOPEN_SOURCE is defined and has a value of 600 or larger. No doubt, since POSIX.1-2001, it should give the prototype by default.

版本

pselect () was added to Linux in kernel 2.6.16. Prior to this,  pselect () was emulated in glibc (but see BUGS).

LINUX 注意

The Linux  pselect () system call modifies its  timeout  argument. However, the glibc wrapper function hides this behaviour by using a local variable for the timeout argument that is passed to the system call. Thus, the glibc  pselect () function does not modify its timeout argument; this is the behaviour required by POSIX.1-2001.

BUGS

Glibc 2.0 provided a version of  pselect () that did not take a  sigmask  argument.

Since version 2.1, glibc has provided an emulation of pselect() that is implemented using sigprocmask(2) and select(). This implementation remains vulnerable to the very race condition that pselect() was designed to prevent. On systems that lack pselect() reliable (and more portable) signal trapping can be achieved using the self-pipe trick (where a signal handler writes a byte to a pipe whose other end is monitored byselect() in the main program.)

Under Linux, select() may report a socket file descriptor as "ready for reading", while nevertheless a subsequent read blocks. This could for example happen when data has arrived but upon examination has wrong checksum and is discarded. There may be other circumstances in which a file descriptor is spuriously reported as ready. Thus it may be safer to use O_NONBLOCK on sockets that should not block.

另請參閱

select_tut (2).

For vaguely related stuff, see accept(2), connect(2), poll(2), read(2), recv(2), send(2),sigprocmask(2), write(2), epoll(7), feature_test_macros(7)